Enhanced Vertical Perception through Head-Related Impulse Response Customization Based on Pinna Response Tuning in the Median Plane

نویسندگان

  • Ki Hoon Shin
  • Youngjin Park
چکیده

Human’s ability to perceive elevation of a sound and distinguish whether a sound is coming from the front or rear strongly depends on the monaural spectral features of the pinnae. In order to realize an effective virtual auditory display by HRTF (head-related transfer function) customization, the pinna responses were isolated from the median HRIRs (head-related impulse responses) of 45 individual HRIRs in the CIPIC HRTF database and modeled as linear combinations of 4 or 5 basic temporal shapes (basis functions) per each elevation on the median plane by PCA (principal components analysis) in the time domain. By tuning the weight of each basis function computed for a specific height to replace the pinna response in the KEMAR HRIR at the same height with the resulting customized pinna response and listening to the filtered stimuli over headphones, 4 individuals with normal hearing sensitivity were able to create a set of HRIRs that outperformed the KEMAR HRIRs in producing vertical effects with reduced front/back ambiguity in the median plane. Since the monaural spectral features of the pinnae are almost independent of azimuthal variation of the source direction, similar vertical effects could also be generated at different azimuthal directions simply by varying the ITD (interaural time difference) according to the direction as well as the size of each individual’s own head. key words: HRTF customization, HRIR, pinna response tuning, principal components analysis

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using computer vision to generate customized spatial audio

Creating high quality virtual spatial audio over headphones requires real-time head tracking, personalized head-related transfer functions (HRTFs) and customized room response models. While there are expensive solutions to address these issues based on costly head trackers, measured personalized HRTFs and room responses, these are not suitable for widespread or easy deployment and use. We repor...

متن کامل

An Enhanced Median Filter for Removing Noise from MR Images

In this paper, a novel decision based median (DBM) filter for enhancing MR images has been proposed. The method is based on eliminating impulse noise from MR images. A median-based method to remove impulse noise from digital MR images has been developed. Each pixel is leveled from black to white like gray-level. The method is adjusted in order to decide whether the median operation can be appli...

متن کامل

Extracting the frequencies of the pinna spectral notches in measured head related impulse responses.

The head related impulse response (HRIR) characterizes the auditory cues created by scattering of sound off a person's anatomy. The experimentally measured HRIR depends on several factors such as reflections from body parts (torso, shoulder, and knees), head diffraction, and reflection/ diffraction effects due to the pinna. Structural models (Algazi et al., 2002; Brown and Duda, 1998) seek to e...

متن کامل

Sound Source Localization Using a Pinna-based Profile Fitting Method

In a two-microphone approach, interaural differences in time (ITD) and interaural differences in sound intensity (IID) have generally been used for sound source localization. But those cues are not effective for vertical localization in the median plane (direct front). For that purpose, spectral cues based on features of head-related transfer functions (HRTF) have been investigated, but they ar...

متن کامل

Individualization of dynamic binaural synthesis by real time manipulation of the ITD

Virtual acoustic environments (VAEs) are commonly realized via dynamic binaural synthesis. Therefore, anechoic audio is convolved in real time with head related impulse responses (HRIRs) or binaural room impulse responses (BRIRs). Binaural filters are exchanged inaudibly and in real time according to the listener’s head movements, thus providing a realistic auditory experience. From Lord Raylei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEICE Transactions

دوره 91-A  شماره 

صفحات  -

تاریخ انتشار 2008